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Pair Programming  
What is it? 



Assumptions 

1. You, your company and your team understand the 

value of pair programming and support it. 

2. You have a strategy in place to implement it. 



Effective Pairing 
• Two heads are better 

• Reduces the silo effect and 
dilutes the diva effect 

• Reduces bugs and code 
rewrites 

• Fastest way to induct new 
team members 

• Shares the best knowledge 
of the team with everyone 

• Distributes 
code/infrastructure 
ownership across the team 

• It is fun! 

 

 

Charlotte: Future Software Developer 



Wasteful Pairing 

• What happens when pairing goes bad? 
o Option 1: Impotent frustration. Distraction. Waste of time. Waste of money. 

Propagates poor habits. 

o Option 2: Work with what you have. Examine your own behaviour. 

• How are you helping?  

• How are you not helping? 

• What can you do to change? 

 



What’s An Archetype? 
• An archetype is a simplified model. 

• Useful to mirror our behaviour when we can’t see it 

ourselves. 

• Pairing archetypes: 
1. Highlights – work to these strengths. 

2. Lowlights – minimise the impact. 

3. Check Yourself – techniques to emphasize the  

highlights and minimise the lowlights. 



Finger-Operated Coder 

• Keyboard hog 

• Fidgeter 

• Trouble explaining 

ideas 

• Has to type out 

mistakes 

• Keyboard shortcuts 

legend 

• Ideas generator 

• Fast typist 

Check Yourself (Driver) 

• Take your hands off the keyboard.  

• Spend more time navigating. 

• Use your words/pen/paper instead of typing. 

Check Yourself (Navigator) 

• Keep pushing your pair to explain/talk/interact with more than  

just their hands. 

• Get your turn in the driver’s seat (e.g. pomodoro). 



The Thinker 

• Thinking or sleeping? 

• May look like not 

paying attention 

• May not share all the 

good stuff 

• Always worth listening 

to 

• Sees issues before they 

arise 

Check Yourself (Driver) 

• Take a moment to tell your navigator you are  in  

thinking mode.  

• Find a technique that helps you to explain what is 

going on in your head (pen & paper/models). 

Check Yourself (Navigator) 

• Don’t try and fill the dead air, give your pair time and space 

to think. 

• Ask questions to get the conversation flowing. 



The Cheerleader 

• Not critical 

• Too focused on 

immediate problem 

• Spends too much time 

navigating 

• Easy to work with 

• Supportive when 

experimenting 

• Confidence building 

Check Yourself (Driver) 

• Use ping pong or pomodoro to ensure even  

driving time.  

• Remind yourself to focus more on the code, less on 

the person you are coding with. 

Check Yourself (Navigator) 

• Ask for critical opinions. 



The Brainiac 

• Keyboard hog 

• If not inclined to share 
knowledge can be 
frustrating 

• Can get carried away 
trying new things 

• A great learning 

resource  

• Able to anticipate 

issues before they arise 

• Writes a lot of good 

code Check Yourself (Driver) 

• Always, always remember the smarter your team  

gets as a whole the better value you are to your 

company.  

•    Listen! 

Check Yourself (Navigator) 

• Ask questions, learn everything you can. 

• Limit your pairing time to avoid becoming a  

spectator. 



The N00b 

• Requires patience from 

your pair 

• Can slow down 

development in the 

short term 

• Explaining code to a 
n00b can uncover 
bugs & refactoring 
opportunities 

• N00b questions can 
highlight gaps in 
partner’s knowledge 

• Generates excitement 
about new stuff Check Yourself (Driver) 

• Balance questions with listening. 

• Try not to get too lost.  

• Take responsibility for your own learning. 

Check Yourself (Navigator) 

• Accept the fact that development will be a little slower. 

• Limit pairing with The N00b if you find teaching draining. 



The Surfer 

• The Internet is a 

Playground but you’re 

at work! 

• Kills the flow 

• Good for mental break 

• Passes the time when 

running tests 

• Good resource for new 

tech 

Check Yourself (Driver) 

• Don’t share unless invited to.  

• Isolate your cool stuff to company spam channel. 

Check Yourself (Navigator) 

• Keep directing attention back to the problem at hand. 



The Talker 

• Can dominate the pair 

• Ideas hog 

• Distracting to quieter 

partner 

• Excellent at describing 

problems and solutions 

• Great brainstormer 

• Good at extracting 

requirements 

Check Yourself (Driver) 

• Use the keyboard as well as your mouth.  

• Remind yourself to listen, listen, listen. 

Check Yourself (Navigator) 

• Get your pair to put ideas on paper. 

• Ask for what you need – “gimme a minute to think” 



The Rock 

• Creates scaffolding for 

throw-away code 

• May lose sight of 

pragmatic 

programming 

• Inflexible 

• Writes reliable code to 

best practices 

• Minimises tech debt 

• Excellent learning 

resource 

Check Yourself (Driver) 

• YAGNI.  

• Remind yourself, again, of the downsides of 

premature  

optimisation. 

Check Yourself (Navigator) 

• Keep checking in “what is our purpose”,  

“do we need that”. 



 

 

• Devs: 
o Can you see yourself in these archetypes? 

o Can you see your team in these archetypes? 

o What, if any, archetypes could you add? 

o How can you catch yourself in the act? 

• Dev managers: 
o Run a tech session for your dev teams on Nice Pairing. 

o What characteristics does your team display: 

• Are these characteristics adding value, or diminishing it? 

• Brainstorm with your team on how to emphasize the good and 

reduce the bad. 



Links  
Nice Pairing blog 

http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html 

 

Pair Programming explained 

http://www.extremeprogramming.org/rules/pair.html 

http://guide.agilealliance.org/guide/pairing.html 

 

Pair Programming advocates 

http://www.scribd.com/doc/25304465/null 

http://www.versionone.com/Agile101/Pair_Programming.asp 

http://www.airpair.com/pair-programming 

 

The Pomodoro Technique 

http://pomodorotechnique.com/ 

 

Ping Pong Programming 

http://c2.com/cgi/wiki?PairProgrammingPingPongPattern 
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