
Nice Pairing
Or, How To Maximise Pair Programming Value

Or, How To Make Things Easier On The People Who
Work With You

Me

Former programming teacher

Now developing software at Lonely

Planet

@adelsmee

adel.smee@lonelyplanet.com.au

Amateur food obsessive

http://pearshapedrecipes.tumblr.com

mailto:Adel.smee@lonelyplanet.com.au
mailto:Adel.smee@lonelyplanet.com.au

Pair Programming
What is it?

Assumptions

1. You, your company and your team understand the

value of pair programming and support it.

2. You have a strategy in place to implement it.

Effective Pairing
• Two heads are better

• Reduces the silo effect and
dilutes the diva effect

• Reduces bugs and code
rewrites

• Fastest way to induct new
team members

• Shares the best knowledge
of the team with everyone

• Distributes
code/infrastructure
ownership across the team

• It is fun!

Charlotte: Future Software Developer

Wasteful Pairing

• What happens when pairing goes bad?
o Option 1: Impotent frustration. Distraction. Waste of time. Waste of money.

Propagates poor habits.

o Option 2: Work with what you have. Examine your own behaviour.

• How are you helping?

• How are you not helping?

• What can you do to change?

What’s An Archetype?
• An archetype is a simplified model.

• Useful to mirror our behaviour when we can’t see it

ourselves.

• Pairing archetypes:
1. Highlights – work to these strengths.

2. Lowlights – minimise the impact.

3. Check Yourself – techniques to emphasize the

highlights and minimise the lowlights.

Finger-Operated Coder

• Keyboard hog

• Fidgeter

• Trouble explaining

ideas

• Has to type out

mistakes

• Keyboard shortcuts

legend

• Ideas generator

• Fast typist

Check Yourself (Driver)

• Take your hands off the keyboard.

• Spend more time navigating.

• Use your words/pen/paper instead of typing.

Check Yourself (Navigator)

• Keep pushing your pair to explain/talk/interact with more than

just their hands.

• Get your turn in the driver’s seat (e.g. pomodoro).

The Thinker

• Thinking or sleeping?

• May look like not

paying attention

• May not share all the

good stuff

• Always worth listening

to

• Sees issues before they

arise

Check Yourself (Driver)

• Take a moment to tell your navigator you are in

thinking mode.

• Find a technique that helps you to explain what is

going on in your head (pen & paper/models).

Check Yourself (Navigator)

• Don’t try and fill the dead air, give your pair time and space

to think.

• Ask questions to get the conversation flowing.

The Cheerleader

• Not critical

• Too focused on

immediate problem

• Spends too much time

navigating

• Easy to work with

• Supportive when

experimenting

• Confidence building

Check Yourself (Driver)

• Use ping pong or pomodoro to ensure even

driving time.

• Remind yourself to focus more on the code, less on

the person you are coding with.

Check Yourself (Navigator)

• Ask for critical opinions.

The Brainiac

• Keyboard hog

• If not inclined to share
knowledge can be
frustrating

• Can get carried away
trying new things

• A great learning

resource

• Able to anticipate

issues before they arise

• Writes a lot of good

code Check Yourself (Driver)

• Always, always remember the smarter your team

gets as a whole the better value you are to your

company.

• Listen!

Check Yourself (Navigator)

• Ask questions, learn everything you can.

• Limit your pairing time to avoid becoming a

spectator.

The N00b

• Requires patience from

your pair

• Can slow down

development in the

short term

• Explaining code to a
n00b can uncover
bugs & refactoring
opportunities

• N00b questions can
highlight gaps in
partner’s knowledge

• Generates excitement
about new stuff Check Yourself (Driver)

• Balance questions with listening.

• Try not to get too lost.

• Take responsibility for your own learning.

Check Yourself (Navigator)

• Accept the fact that development will be a little slower.

• Limit pairing with The N00b if you find teaching draining.

The Surfer

• The Internet is a

Playground but you’re

at work!

• Kills the flow

• Good for mental break

• Passes the time when

running tests

• Good resource for new

tech

Check Yourself (Driver)

• Don’t share unless invited to.

• Isolate your cool stuff to company spam channel.

Check Yourself (Navigator)

• Keep directing attention back to the problem at hand.

The Talker

• Can dominate the pair

• Ideas hog

• Distracting to quieter

partner

• Excellent at describing

problems and solutions

• Great brainstormer

• Good at extracting

requirements

Check Yourself (Driver)

• Use the keyboard as well as your mouth.

• Remind yourself to listen, listen, listen.

Check Yourself (Navigator)

• Get your pair to put ideas on paper.

• Ask for what you need – “gimme a minute to think”

The Rock

• Creates scaffolding for

throw-away code

• May lose sight of

pragmatic

programming

• Inflexible

• Writes reliable code to

best practices

• Minimises tech debt

• Excellent learning

resource

Check Yourself (Driver)

• YAGNI.

• Remind yourself, again, of the downsides of

premature

optimisation.

Check Yourself (Navigator)

• Keep checking in “what is our purpose”,

“do we need that”.

• Devs:
o Can you see yourself in these archetypes?

o Can you see your team in these archetypes?

o What, if any, archetypes could you add?

o How can you catch yourself in the act?

• Dev managers:
o Run a tech session for your dev teams on Nice Pairing.

o What characteristics does your team display:

• Are these characteristics adding value, or diminishing it?

• Brainstorm with your team on how to emphasize the good and

reduce the bad.

Links
Nice Pairing blog

http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html

Pair Programming explained

http://www.extremeprogramming.org/rules/pair.html

http://guide.agilealliance.org/guide/pairing.html

Pair Programming advocates

http://www.scribd.com/doc/25304465/null

http://www.versionone.com/Agile101/Pair_Programming.asp

http://www.airpair.com/pair-programming

The Pomodoro Technique

http://pomodorotechnique.com/

Ping Pong Programming

http://c2.com/cgi/wiki?PairProgrammingPingPongPattern

http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://engineering.lonelyplanet.com/2013/08/09/Nice-Pair---Pair-Programming-Archetypes.html
http://www.extremeprogramming.org/rules/pair.html
http://guide.agilealliance.org/guide/pairing.html
http://www.scribd.com/doc/25304465/null
http://www.versionone.com/Agile101/Pair_Programming.asp
http://www.airpair.com/pair-programming
http://www.airpair.com/pair-programming
http://www.airpair.com/pair-programming
http://pomodorotechnique.com/
http://c2.com/cgi/wiki?PairProgrammingPingPongPattern

